If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+38x+17=0
a = 20; b = 38; c = +17;
Δ = b2-4ac
Δ = 382-4·20·17
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{21}}{2*20}=\frac{-38-2\sqrt{21}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{21}}{2*20}=\frac{-38+2\sqrt{21}}{40} $
| 10x+84=23x+6 | | 8x-3=-3x+2 | | n/5.9=11/1 | | -8(a/8-2)+18=26 | | 17x^2+38x+20=0 | | 18x^2+37x+18=0 | | 0.5x-9=4×+5 | | 65+n/9=54 | | 122+142=c2 | | 15x^2+33x+15=0 | | 17x^2+23x+19=0 | | 13x^2+29x+13=0 | | 6x^2+15x+4=0 | | 8y=-4y-24 | | 8y=-4y-2 | | y=-4y-24 | | 4(x-6)-3x=-24+x | | (12.25+x)0.06+0.06=19.08 | | 10(z+2)-4(z-2)=2(z-2)+3(z-4) | | 7-z=18 | | 3(r+7)+6r=47 | | 92/(36-x)=4 | | x/(-7)=14 | | (25+x)/3=27 | | 3x-2=-7x+28 | | 15=-4p+4 | | 4c=3+c+4 | | (8x/2x3)-1=23 | | Yx.6=80 | | 7x+13+86+15x=19 | | 14(x-10)=84 | | 5z+2=3z+14 |